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INTRODUCTION

The problem of controlling a sensory—interactive robot is similar
in many respects to that of controlling any complex system such
as an army., a government, a business:; or a biological organism.
The command and control structure for such systems is invariably
a hievarchy wherein goals, or tasks, selected at the highest lev—
el are decomposed into sequences of subtasks which are passed to
the next lower level in the hierarchy. This same procedure is
repeated at each level until at the bottom of the hierarchy there
is generated a sequence of primative tasks which can be executed
with single actions. Sensory feedback enters the hierarchy at
many different levels to alter the task decomposition so as ¢to
accomplish the highest level goal in spite of uncertainties or
unexpected conditions in the environment.

Problem reduction, or task decomposition, is a classic hierarchi-
cal approach to problem solving [11. In Figure 1 the problem A
may be solved either by solving subproblems B or C. The nodes B
and C are called OR nodes. Problem B has been decomposed into
twp subproblems D and E, both of which must be solved in order to
solve B. SBimilarly problem C is decomposed into two subproblems
F and G both of which must be solved to solve C. Nodes D and E
and nodes F and G are called AND nodes and arvre shown with a bar

Joining their arcs. At some point in the decomposition process,
primitive subproblems (ones whose solutions are known) are gen-—
erated. In Figure 1, if either D and E, or F and G are primitive

subproblems, then the problem A is solved. A structure like that
shown in Figure 1 is called an AND/OR graph.

PLANNING VS. CONTROL

tiost research with problem reduction and AND/OR graphs has been
done in the study of planning, not the study of control systems.
In planning the emphasis is on mechanisms for searching AND/OR
graphs +to find, and hopefully to optimize solutions. This is
relevant to problems in abstract mathematics or to board games
. where there can be a planning period between each move.

In control systems, however, ¢time is.a critical variable. Action
is continuous and on—going. If planning is to be done, it must
be done off—-line, or in a background mode because in real-time
control systems, searching and backtracking are unacceptable, and
time delays between observing and acting are a major source of
instability.

Nevertheless, AND/OR decohposition is a valuable tool for analyz—
ing hierarchical networks. What is needed to apply AND/OR graphs
to hierarchical control systems is a mechanism for generalizing
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from a discrete to a continuous form with time explicitly
represented. :

AND/OR TRAJECTORIES

As part of our research program at NBS [2] we have developed a
notation for continuous time—dependent. AND/OR graphs which essen-
tially merges sequences of AND nodes into smooth trajectories and
lets OR nodes be capable of lying anywhere within large regions
of multidimensional space. In order to visualize this concept
let us define a task decaomposition operator as a continuous sin-
gle valued function H which transforms an input vector S = (sq, S5
s . s,) composed of continuous time—dependent variables s;.
into an output vector P = (p_ ., Pyt = - - pL) composed of continu-

ous time dependent variableslp .

J

H thus maps each input vector § in input space into an output
vector P in output space. If the input vector moves as a func-—
tion of time (as a result of any of its components changing with
time) ¢then 8 will describe a tragjectory T, through input space.
Assume the function H samples the input periodically and after a
short computation delay produces an output. Thus as 5 moves

along TS s P will move along TP . This is illustrated in Figure
2.

We can now divide the input vector into two parts. -

£ =1A(s; » ...8; ) — where we can call C some command
vector, and
F = (s, } — whevre we ctan call F some feed-

- irl toae ol
back vector such that § = C + F as shown in Figure 3.

Assume for the moment that C (a command such as telling the robot
to locate and pick wup an object on a moving conveyor) is held
constant while F (feedback from sensors such as an encoder that
tells the position of the conveyor and from lower level vision

and touch sensors) is allowed to vary. If F varies smoothly, the
vector S will trace out the trajectory T, as shown in Figure 4.
The function H maps each point on T_ into a point on T . (H

might compute the correct cartesiah coordinate values Tg for the
vobot as the input TS varies in time.)

The tip of the vector C now corresponds to the selection of an OR
node. The tip of the vector F traces out a series of AND nodes
under this OR node. In the case where F varies smoothly the AND
nodes merge into a continuous trajectory. If F moves in steps
from Flto FPto F3, then the vector S Jumps from one discrete
point along Tg to another. Thus the continuous analysis degen-—
erates to the discrete when the inputs are discrete.
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The variation in F may be caused by external forces imposed by
the environment, or by actions produced by the output, or both.
One or more of the variables in the feedback vector F may even be
taken directly #from the output vector P . In the latter case,
the H operator becomes the transition function for a state auto-
maton. In any of these cases the result is that a single command
vector € produces a sequence of output vectors T, The process
is driven by the sequence of feedback vectors Fl, F2; F3, ... The
superscript FX denotes the vector F at time k © = 7

The sequence of operations illustrated in Figure 4 can also be
viewed as a decom%osztxon of a command C into a sequence of sub-—
- commands P ) The vector C may, of course, be a symbol
standing “for any number of things such as a task, a goal, or a
plan. In such cases the autput string Pl P2 P3, represents a
sequence of subtasks, subgoals, or sub—plans respectzvelg

Figure 4, can.also be viewed as a servomechanism where € defines
a setpoint and F provides the feedback which is used to compute
an error signal. H then is the servo system transform function.
In. this case there are many practical problems concerned with
stability, speed, gain, delay, phase shift, etc. In our notation
thése are all embeded in the H functions. I# the H functions are
correctly formulated and defined over the entire space traversed
by the § input, then the ouvtput T, will drive the physical actuva-
tors in such a way that the goal is achieved, i.e., the error
between  the command C and the results P is nulled, and stability
is maintained under all conditions.

HIERARCHICAL CONTROL

Assume that the command vector C in Figure 4 changes such that it
steps along the trajectory T, as shown in Figure 5. The result
is that the sequence of input c¢ommands C1l-3, C4-5, ... produce
the sequence of output vectors P1 , PZ , P37, P4 , PS5 , In this
case the sub-sequence P1L , P2 , P3 , is called by the command
and driven by the feedback FL , F° , F3 . The sub—sequence P* |
P5 is called by C =5 and driven by F4, FJ, etc.

If we now represent time explicitly. the C, F, and P vectors and
traJectorxes of Figure 5 appear as shown in Figure &. The fact

that C remains constant while the feedback changes from F1 , to Fe

to F?' means that the trajectory T..is parallel to the time axis
over that interval. The jump from 61—3 to C*-5 causes an abrupt
shift in the T, trajectory in the time interval between F3and F:

Note that each instant of time can be represented by a plane (ovr
set of co-planar regions) perpendicular to the time axis. Each
plane contains a point from each trajectory and represents a

snapshot of all the vectoaors simultaneously at a specific instant
in time.
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We are now veady to consider a hierarchy of servomechanisms, ov
task decomposition operators, as 1is shown on the left side of
Figure 7. Here the highest level input command C) is a symbolic
vector denoting the complex task (ASSEMBLE AB). The subscript Cx
denotes the C vector at the k—th level in the hievrarchy.

Note that in Figure 7, vectors are not repeatably drawn for each
instant of time during the trajectory segments when they are rea-
sonably constant. Thus, C) is shown only at the beginning  and
end of the trajectory segment labeled (ASSEMBLE AB). - Co is shown
only at the transition points between (REACH ¢to A). (GRASP),
(MOVE TO X), (RELEASE), etc. It should be kept in mind. however,
that H, computes P) continuously and produces an autput at every

instant of time just as Hz‘does 52.

The feedback F) may contain highly processed visval scene
analysis datae which identifies the general layout of the work
space and thereby determines which output vectors Py, +» and hence
which simple task commands C,, should be selected and in which
order. F, may also contain data from P, and P, which indicate
the state of completion of the decomposition of Cy. F) combines
with Sh to define the complete input vectar S. The H), operator
produces an output vector P, = H, (5)). As the feedback F; varies
with time, the input vector §) , and hence the output vector P, .
moves along a tragectory generating a sequence of "simple task"
commands at C, such as (FETCH &), (FETCH B), {(MATE B TO a),
(FASTEN B TO A), etc. as shown in Figuvre 7.

ﬁ3 is also a symbolic vector which identifies one of a library of

simple task® commands together with the necessary modifiers and
arguments. Feedhack at Fymay identify the position and orienta-
tion of the parts A and B and also caarry state sequencing infor—
mation from outputs Psand P, As F3 varies with time it drives
the input S5 and hence P,, along a trajectory generating a se—
quence of "elemental movement" commands at C, such as (REACH TO
A) (GRASP), (MOVE TG C), (RELEASED), etc.

Feedback at F, may contain information from proximity sensors or
force and touch sensors indicating the fine positioning error
betuween the fingers and the objects to  be manipulated together
with state sequencing information derived from P, and P. . The
operator Hq produces P, which denotes the proper velocity vectors

for the “manipulator hand in Jjoint angle coordinates. Feedback
f% also provides joint angle position data necessary - for the
coordinate transformations performed by H, . EQ provides refer—
ence, or set point commands € to the servomechanism operator H,.
Fi provides position, wvelocity, and force information for the
traditional servo computations. The output P; is a set of drive
signals to the actuators.



Feedback enters this hievarchy at every level. At the lowest
levels the feedback 1is unprocessed, or nearly so, and hence is
fast acting with very short loop delays. At higher levels feed-
back data passes through more and more stages of an ascending
sensory—processing hiervarchy. Feedback thus closes a real time
control 1loop at each 1level in the hierarchy. The lower level
loops are simple and fast acting. The higher 1level 1loops are
more saophisticated and slower.

At each level the feedback vector F drives the output vector P
along its trajectory. Thus, at each level of the hierarchy, the
time rate of change of the output vector P will be of ¢the same
order of magnitude as the feedback vector £ , and considerably
more rapid than the command vector € . The result is that each
stage of the behavior generating hierarchy effectively decomposes
an input task represented by a slowly changing € into a string
of subtasks represented by a more rapidly changing P

At this point we perhaps should emphasize that the difference in
time rate of change of the vectors at various levels in the
hierarchy does not imply that ¢the H operators are camputing
gslower at the higher levels than at the lower. We will, in fact,
assume that every H operator transforms § into P with the same
computational delay At at all levels of the hierarchy. That is

L Lk 1
Pi (£) = H; (8 (t-at)) or Bf = H; (5™

at every level. The slower time rate of change of P vectors at
the higher levels stems from the fact that the F vectors driving
the higher levels convey information about events which occur
less frequently, and in some cases components of higher level E
vectors may require the integration of information over long time

intervals or the recognition of symbolic messages with long word
lengths.

When we represent time explicitly as in Figure 7, we can label
the relatively straight segments of the T, trajectories as tasks
and subtasks, Transitions between the subtasks in a sequence
correspond to abrupt changes in Tb.

If we do not represent time explicitly, the relatively consfant C

vectors correspond to nodes as in Figure 5. The resulting tree
structure represents a classical AND/OR decomposition of a task
into sequence of subtasks where the discrete C vectors

correspond to OR nodes and the rapidly changing sequences of P
vectors become sets of AND nodes under those OR nodes.



INTENTIONAL OR PURPOSIVE BEHAVIOR

Figure 7 illustrates the power of a hierarchy of multivariant
servos to generate a lengthy sequence aof behavior which is both
goal—-directed and appropriate to the environment. Such behavioar
appears to an external observer to be intentional. or purposive.
The top level input command is a goal, or task, which is succes—
sively decomposed into subgoals, or subtasks, at each stage of
the control hierarchy until at the lowest 1level output signals

drive the muscles, oar other actuators:, producing observable
behavior. -

To the extent that the F vectors at the various levels contain
sensory information from the environment, the task decompositions
at those levels will be capable of responding to the environment.
What the response to each F vector is depends on the H function
at that level. If the F vector at any level is made up solely of
internal variables, then the decompasition at that level will be
stereotyped and insensitive to conditions in the environment.

Whether or not the hierarchy is driven by external, or internal
variables, or both, the highest level input command commits the
entire structure to an organized and coordinated sequence of ac-—
tions which under normal conditions will achieve the goal or ac-~
complish the task. The selection of a high level input command
in a biologiczal organism thus corresponds to an intent, or pur~
pose, which depending on circumstances, may or may not be succes-—

fully achieved +through the resulting hierarchical decomposition
into action.

The success or failure of any particular task performance, or
goal- seeking action depends upon whether the H functions at each
level are capable of providing the correct mappings so as to
maintain the output tragjectory within a region of successful per—

formance despite perturbations and uncertainties in the environ-
ment.

At all levels variations in the F vectors due ¢to irregularities
in the environment cause T, trajectories to vary from one task
performance to the next. This implies that while there may exist
a set of ideal trajectories through 8§ and P space at each level
of the hierarchy corresponding to an ideal task performance.
there also must be an envelop of close—-to—ideal trajectories
which correspond to successful, but not perfect, task perfor-
mance. This is illustrated in Figure B.

The H functions must not only be defined along the Tgtragectories
corresponding to ideal performance, but also in the regions
around the ideal performance, so that any deviation from the
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ideal is treated as an error signal which generates an action
designed to rvestore the actual trajectory to the ideal, or at
least to maintain it within the region of successful performance.

Small perturbations can usually be corrected by low level +¢eed-—
back loops as shown in Figuve 9. These involve relatively little
sensory data processing, and hence are fast acting. Larger per—
turbations in the environment may overwhelm the lower level feed-—
back loops and require strategy changes at higher levels in order
to maintain the system within the region of successful perfor-—
mance. This is illustrated in Figure 10. Major changes in the
environment are detected at higher 1levels after processing
through several levels of pattern recognizers. This produces
differences in the F vectors at the higher level which in turn
produces different C vectors to lower levels. The result is an
alternative higher level strategy to cope with the perturbation.

‘af course, if the H functions do not provide stability, or if the
environment is so perverse that the system is overwhelmed, then
the trajectories diverge from the region of successful perfor-
mance and failure occurs. '

Note that Figure 7 illustrates only a single specific performance
of a particular task. None of the alternative trajectories which
might have oeccurred under different circumstances with a dif-
ferent "set of F vectors are indicated. These alternatives which
might have occurred can be illustrated in the plane orthogonal to
the time axis.

In Figure 11, we use an example from a biological goal-seeking
control systemi that of a fish. This figure illustrates the set
of alternative C vectors postulated by Tinbergen [4]1 to reside at
various levels 1in the behavior—generating hierarchy of the male
three—-spined stickleback fish., This Figure vrepresents & snap
shot., or single cut through space orthognal to the time axis.
Cg» the highest level goal is survival. The feedback Fy consists
of variables indicating water temperature and depth, blood chem-
istry, and hormone levels generated by Ilength—of~day detectors.
When the hormone levels indicate the proper time of year, -and the
blood chemistry does not call for feeding behavior, then migrato-
vy behavior will be selected until warm» shallow water is detect-
ed. The F¢ vector will then trigger +the reproduction subgoal.
When C5 indicates (REPRODUCTION), the F- vector indicating a red
male in the territory will select the (FIGHT) command to ¢ .
When () indicates (FIGHT) and the intruder threatens, a C3 will
be selected, and so on. At each level, a different feedback vec-—
tor wauld select a different lower level subgoal. For example,
i# Fg , indicates a female in the tervitory, ¢, will become
(MATE), and the type of mating behavior selected will depend on
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In simple creatures 1like the stickle—-back +fish, the sensory
stimuli that produce E vectors which trigger behavioral trajec-
tories are called "innate releasing mechanisms. " Innate releasing
mechanisms and their associated behavioral patterns have been
studied extensively in a number of insects such as the digger
wasp and various species of bees and ants, several fish, and many
birds:, including the herring—gull, the turkey, and the golden eye
drake [D1.

In these relatively simple creatures, behavior is sufficiently
sterotyped that it can be described in terms of a small set of
behavioral patterns triggered by a equally small set of sensory
stimuli. This suggests that insects, fish, and birds have only a
few levels in their control hierarchies and a small set of
behavior patterns stored as H functions at each level. It furth-
er implies there are few externally driven components in the F
vectors at  each 1level. Behavior tragjectories are internally
driven with only a few branch points controelled by sensory data
processed through simple pattern recognizers. The tragjectory
segments driven entirely by internal variables are what are knoun
as fixed action patterns, or tropisms. The external variables
which control the relatively few branch points are ¢the innate
releasing mechanisms.

The types of goal-seeking behavior we might expect to obtain #rom
industrial robots over the next decade or two is of the same gen-—
eral level of complexity as that of an insect or simple +fish.
Four or five levels in the control hierarchy with a library of
ten or twelve control subroutines (C vectors) available at each
level, and a reasonable number (less than ten) of branch points
in each subroutine is more than adequate to generate extremely
complex sensory—interactive, goal-directed behavior in the con-
strained environment of a shop floor.

Figure 12 illustrates a set of trajectories in which there is op~
portunity for branching at several different levels at every step
along each trajectory. At each instant in time the € wvector to
any particular level depends upon what the C and F vectors were
to the next higher level at the previous instant. Thus, a change
in the F vector at any level causes an alternative C vector to be
sent to the level below. Behavior is continuously modified at
all levels by external variables and hence, does not appear
stereotyped at all.

In general, the complexity of behavior which can be generated by
a control hierarchy depends on four factors.
1. The number of levels in the control hierarchy.,
2. The number of feedback variables which enter each level,
3. The sophistication of the H functions which reside at
each level,
4

The sophistication of the sensory processing systems
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which extract feedback variables for use by the various H
functions.

SENSORY PROCESSING IN A CONTROL HIERARCHY

The fundamental problem of pattern recognition is ¢o name the
patterns. All the patterns with the same name are in the same
class. When a pattern has been given a name we say it has been

recognized. For example, when the image of a familiar face falls
on my retina and 1 say "That’s George." I have recognized the
visual pattern by naming it.

Any spatial pattern can be represented as a vector. For example
a picture can be represented as an array, or ordered list, of

brightness or color values. A symbolic character can be
represented as an ordered list of features (or arbitrary numbers
as in the ASCII convention). Any temporal pattern can be

represented as a trajectory through an N-dimensional space. For
example, an audio pattern is a sequence of pressure ar voltage
values, i.e., a one dimensional trajectory. A moving picture of
televison,scene corresponds to a sequence of. picture vectors,
i.e., a N-dimensional trajectory where N is the number of picture
resolution elements or pixels.

At this point we need to introduce some new notation so as %o
clearlg' distinguish between vectors in the sensory-processing
hierarthy and those in the behavior—generating hierarchuy. Thus
we will define the input vector to a sensory processing module as

D=E+R where E = (d; » d, ,» ...., d; ) is a vector, or
list, of data variables derived from sensory input from the
external environment and

R = (d; ....» dy )} is a vector of data wvariables
derived from recalled experiences, or internal context. The map-
ping operator in the sensory—praocessing hierarchy will be denoted
¢ and the output G such that

@ =6 (O

We can now define a D vector to represent a sensory pattern plus
context such that each caomponent d; represents a deta point or
feature of the pattern plus context. The existence of the D vec-
tor within a particular region of space therefore corresponds to
the occurrence of a particular set of features or a particular
pattern in a particular context. The recognition problem then is
to find a 6 function which computes an output vector @ = € (D)

such that Q@ is the name of the pattern and context D as shown in
Figure 13.

In other words G can recognize the existence of a particular pat-
tern and context (i.e., the existence of D in a particular region
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of input space) by outputting the name Q. For example,
@ = Class I whenever D is in Region 1
Q= Class II whenever D is in Region 2

etc.

In the case where the D vector is time dependent, an extended
portion of a trajectory Tp may map into a single name Q@ as shown
in Figure 14, It then is possible by integrating G over time and
thresholding the integral to detect, or recognize, a temporal
pattern T, such as a sound or a visual movement. :

The recognition, or naming, of a temporal pattern as illustrated
in Figure 14 is the inverse of the decomposition of a task as il-
lustrated in Figures 4-7. In task decomposition a slowly varying
command C is decomposed into a vapidly changing output P. In
pattern recognition a rapidly changing sensory experience E is
recognized by a8 slowly varying name Q.

THE USE OF CONTEXT

It frequently occurs in pattern recognition, or signal detection.,
that the instantaneous value of the sensary input vector E is am—
biguous or misleading. This is particularly true in noisy en—
vironments or in situvations where data dvropouts are likely to oc-—
cur. In such cases the ambiguity can often be resolved, or the
missing data filled in if the context can be taken into account,
or if the classification decision can make use of some additional

knowledge or well founded prediction regarding what patterns are
expected. ‘

The addition of context or prediction variables R to the sensory
input E such that D = E + R increases the dimensionality of the
pattern input space. The context variables thus can shift the
total input (pattern) vector D to different parts of input space
depending on the context. Thus:, as shown in Figure 15 the ambi-
guous patterns E and E, which are too similar to be reliably
recognized as in separate classes, can be distinguished when ac-
companied by context R, and 52

In robot control many variables can serve as context variables.
In fact any information about anything occurring simultaneously
with the input pattern can be regarded as context. Thus context
can be data from other sensory modalities as well as information
regarding what is happening in the behavior—-generating hierarchy.
In many cases, data #from +this latter source is particularly
relevant to the pattern recognition task, because the sensory in-—
put at any instant of time depends heavily upon what action is
currently being executed. For example in biological systems the
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information from the behavior—generating hierarchy provides con-
textual information necessary for the visuval processing hierarchy
to distinguish between motion of the eyes and motion of the room
about the eyes,

In a classic experiment, von Holst and Mittelstaedt [46] demon-—
strated that this kind of contextual data pathway actually exists
in insects. They obsevrved that a fly placed in a chamber with
rotating walls will tend to turn in the direction of rotation so
as to null the visval motion. They then rotated the #fly’s head
180 degrees around its body axis (a procedure which for some rea-—-
son is not fatal to the fly) and observed that the fly now cir-
cled endlessly becauvse by attempting to null the visual motion it
was now actually increasing it. Later experiments with motion
perception in humans showed that the perception of a stationary
environment despite motion of the retinal image cavsed by moving
the eyes is dependent on contextual information derived from the
behavior—genevrating hierarchy. The fact that the context is ac—
tually derived from the behavior—generating hierarchy rather than
from sensory feedhack cau be demonstrated by anesthetizing the
eye muscles - and observing that the effect depends on the intent
to move the eyes, and not the physical act of movement. The per-—
ceptual correction eccurs even when the eye muscles are parvalyzed
so that no motion actuvally results from the conscious intent to
move.

THE INTERNAL WORLD MODEL

Contextual information can also provide predictions of what sen-—
sory data to expect. This allows the sensory—precessing modules
to deo predictive filtering, to compare incoming data with
predicted data, and to fly—-wheel through noisy data or data dro-
pouts.

The mechanism by which such predictions, or expectations, can be
‘generated is illustrated in Figure 16. Here contextual input for
the sensory—processing hierarchy is shown as being processed
through an M module before being presented to the sensory pattern
recognition G modules at each level. Input ¢ao the M modules
derive from the P vector of the corresponding behavior—generating
hierarchy at the same level as well as an X vector which includes
context derived from other areas of the hrain such as other sen—
sory modalities or other behavior—generating hierarchies. These
M modules compute R = M (P + X). Their position in the links
from the behavior—genevating to the sensory—processing hierar—
chies allow them to function as a predictive memory. They are in
a position to store and recall (or remember) sensory experiences
(E wvector trajectories) which occur simultaneous with P and X
vector trajectories in the behavior—genevrating hierarchy and oth-
er locations within the brain. For example, data may be stored
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in each M module by setting the desired ovtput R equal to the
sensory exper;ence vector E . At each instant of time t = &k
sensory data represented by Ek w111 then be stored on the memory
address defined by the Pk+ X vector. The vesult will be that
the sensory experience represented by the sensory data trajectory
Tp will be stored in association with the context trajectory

Tpax

Any time afterwards, t = k + j, a reoccurrence of the same con-—
text vector Pk¥] 4+ ¥kt = Pk 4+ XKwill produce an output R¥HJ
equal to the EK stored at time t = k. Thus a reoccurrence of the
same context trajectory Tpix will produce a vecall trajectory
Tg equal to the earlier sensory experience Ty . These predic—
tive memory modules thus provide the sensory—processing hierarchy
with a memory trace of what sensory data occurred on previous oc—
casions when the motor generating hierarchy (and other pavrts of
the brain) were in similar states along similar trajectories.
This provides the sensory-processing system with a prediction of
what sensory data to expect. What is expected is whatever was
experienced during similar activities in the past.

In the ideal case, the predictive memory modules M will gen—
erate an expected sensory data stream T which exactly dupli-—-
cates the observed sensory data stream T . To the extent that

this occurs in practice it enables the ¢ modules to apply very
pouerful mathematical techniques to the sensory data. For exam—
ple the G modules can use the expected data T to:

1. Perform cross—correlation or convolution algorithms to
detect sync patterns and information bearing sequences
buried in noise,

2. Flywheel through data dropouts and noise bursts,

3. Detect (or recognize) deviations or even omissions from
an expected pattern as well as the occurrence of the
pattern in its expected form.

If we assume, as shown in Figure 14 that predictive recall
modules exist at all levels of the processing—generating hierar-
chy, then it is clear that the memory trace itself is multilev—
eled. In order to recall an experience precisely at all levels,
it is necessary to generate the same context (i.e., P + X ad-
dress) at all levels as existed when the experience was recorded.

We can say that the predictive memory modules M define an inter-
nal model of the external world. They provide answers to the
question, "if I do such and sa, what will happen?" The answer 1is
that whatever happened before when such and so was done, will
probably happen again. In shart, IF I dao Y, THEN Z will happen
when Z is whatever was stored in predictive memory the last time
(or some statistical average over the N last times) that I did Y,
and Y 1is some action such as performing a task, or pursuing a
goal in a particular environment or situation, which is
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represented internally by the P vectors at the various different
levels of the behavior—generating hierarchy and the X vectors
describing the states of various other sensory—processing

behavior—generating hierarchies.

There are three aspects of a control hierarchy: One is the or-
ganizational hierarchy, " shown an the left side of Figure 17,
which defines the command and control structure and specifies the
relationship between ¢the wvariogus processing and generating
modules. Two is the computational hierarchy. shown at the center
in Figure 17, which defines the state variables and the functions
that map input variables into output wvariables. Three 1is the
behavioral hierarchy which defines the flow of actions that give
rise to observable behavior. The right side of Figure 17 1is an
illustration of a behavioral hierarchy. It should be noted that
the organizational hierarchy is not a strict tree structure, as
there 1is much information flow between computational modules at
the same level, and even between levels. Nevertheless, the pri-
mary flow of command and control information is vertical along
the chain of command, and not lateral between modules at the same
level. The 1lines between the three hierarchies illustrate the
relationships between the computational structure, the state
‘"variables, and the flow of time. This way of viewing the problem
provides a mathematical formalism that is «clear, concise, and
computationally wuseful in both analysing and synthesizing intel-
ligent control system performance.

SOFTWARE IMPLEMENTATION

The design of a software system which can implement the multi-
level branching of the cross—coupled processing—generating goal-
seeking hierarchy shown in Figure 16 is conceptually straight
forward. At each level of the generating hierarchy, the H func-
tion represents a table, or list, of states and S P state map—
pings, one of which is selected by every possible combination of
input vectors C + F. At each tick k the selected state mapping H
computes an Pk = H(Sk-1) which provides the input to octher
modules in the hierarchy at the next time tick. In other words,
the input € + F constitutes an address, or pointer, to a node
which contains either the output P itself or a procedure for
computing P . This is illustrated in Figure 18

One method of implementing H modules is to define each state
mapping in an H module as a production rule. For example the
simple task FETCH (X) is defined by the state table in Figure 19.
Note that the lefthand side of the state table contains a command
type defined by the input command vector €, a state defined by
self—feedback of the k-1 output U, and flags (or recognized con-
ditions) from the external feedback vector F.

-
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The right hand side of the state table defines (or points to pro-
cedures which define) the output vector P which becomes input for
other H modules at the next clock tick. = The g parameter con-
tained on the right hand side of the state table is sent to the G
module (or the M module if one exists) at the corresponding level
of the sensory—processing module. The g parameter output at time
k selects the G function for the feedback computed at time k+1.
For example, in Figure 19, when <¢the g output 1is g, ., the
sensary—processing module is instructed to evoke the € fdnction
which computes the orientation of X. The flag bits then indicate
whether ORIENTATION (X)> 0 or ORIENTATION (X) < 0. When ¢the g

output is 9, the € function which computes the distance to X
is evoked. ' )

The entire library of procedures in an H module, and the state
table for accessing them is illustrated in Figure 20.

We can now describe a procedure which is executed by the H module
at each clock tick. At esch time tick k the left hand side of
the state table is searched for an entry corresponding to the in-—
put €k~ Fk-1  If an entry is found, the i pointer is set to that
location and PkKis used as a pointer to a procedure H which com-

putes an output E# = H (8k-1) If no entry can be found the
pointer is set to an error condition and a procedure is evoked
to output the appropriate failure activities. In most cases a

failure condition will ouvtput s STOP command to the H module
below and a failure flag to the sensory processing - ¢ module.

Each entry in the tables of Figures 12 and 20 represent an
IF/THEN rule, or production. With this construction it becomes

possible to define behavior of arbitrary complexity. An ideal
task performance can be defined in terms of the list of events
which must take place during the ideal performance. Deviations

from the ideal can then be incorporated by simply adding the de-—
viant conditions to the left hand side of the tables and the ap-—
propriate action to be taken to the right hand side. Any condi-
tion not explicitly covered by the table results in a general
failure routine being executed.

Each IF/THEN rule is thus a modular chunk of knowledge which de—
fines a particular condition of the world and what the appropri-
ate response should be. The stringing tagether of such chunks
into H functions for task decomposition ov G functions far pat—
tern recognition can then readily be accomplished. Mew condi-
tions can easily be added and existing rules easily modified. We
feel that this has many benefits for teaching industrial robots
to perform new tasks and respond to new sensory data.
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MICROCOMPUTER NETWORK IMPLEMENTATION

In our laboratory at NBG, we are in the process of implementing
the type of cross—couvpled measurement/control hierarchy described
above. We have chosen to implement the hierarchy in a network of
microcomputers because we believe this to be the best way to
achieve low cost and upward compatibility.

However, such a logical architecture can be implemented on a min-
icomputer. In fact, ¢the first version of the NBS hierarchical
control system was implemented an a PDP 11/45 [7].

The present system is & network of microcomputers with the archi-
tecture shown in Figure 21. Time is sliced into 20 millisecond
increments. At the beginning of each increment each logical
module reads its set of input values from the appropriate loca-

tions in common memory. It then computes its set of output
values which it writes back into the common memory before the 20
millisecond interval ends. If a logical module takes longer than

the 20 milliseconds ¢to compute an output, an on—-board protocol
procedure causes the processor to get back in synchronization
with <the reset pulse before writing out the results to common
memory. The process then repeats.

Each logical module ic¢ thus a state machine whose output depends
only on its present inputs and its present internal state. None
of the logical modules admit any interrupts. There is only the
reset—sync pulse that signals the beginning and end of the 20
millisecond computation intervals. This simple modular structure
enormously simplifies the writing and debugging of software.

THE NBS VISION SYSTEM

The sensory side of the NBS hierarchical control system contains
a vision system which uses active illumination to obtain depth
information (B). A plane of light is generated by a photoflash
tube and a cylindrical lens. This plane is projected into the
field of view of a solid state 128x128 auvtomation camera such
that the distance to an illuminated surface can be directly com-
puted by simple trigonometry. This camera and #Flash wunit are
fixed to the wrist of the robot manipulator.

The control hierarchy activates the vision system at specific
points in a particulary task execution. The control hieravrchy
also tells the vision software what type of object to expect and
approximately how far awasy the object is expected to be. The vi-
sion software uses this information to select appropriate wvalvues
for flash intensity and threshold and appropriate software algo-
rithms for processing the visual data.
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The vision processing modules either confirm the existence of the
expected object and tell the control system where to move to ap-
proach it, or report that the expectation was incorrect.

At present, the NBS vision system interfaces with the control
system primarily &t the primitive action level for computing
range and position of grip points and at the elemental move level
for computing part orientation and approach paths. However, we
are now in the process of adding new capabilities for part recog-
nition at the simple task level. '

COMMON MEMORY DATA TRANSFER

All communications of data from one module to another in the NBS
hierarchical control system take place via a common memory “mail
drop" system as shown in Figure 21. This system has a disadvan-
tage in that it requires two data transfers to get information
from one module to another. However, we believe this disadvan-—
tage is far overshadowed by the following advantages:

1. There are no communication protocols between computing
modules, because modules do not talk directly to each other.
Only one processor is allowed to write into any single loca-
tion in common memory. In each 20 millisecond time slice,
all modules read from common memory hefore any are allowed
to write their outputs back in.

2. The addition of each new state variable requires only a
definition of where it is to be located in common memory so
that the module which generates it knows where to write it,
and the modules which read it know where to look. Thus, new
microcomputers can easily be added, logical modules can be
shifted #from one microcomputer to another, new functions
such as safety watchdogs, and even new sensors can be in-—
cluded with limited effect on the rest of the system. As
long as the system bus has surplus capacity, the physical
structure of the system can be reconfigured with few changes
rvrequired in the software resident in the logical modules.

3. The common memory always contains a readily accessible
map of the current state of the system. This makes it easy
for a system monitor to trace the history of any or all of
the state wvariables, ¢to set break points, and to reason
backwards to the scurce of program errors or faulty logic.
This is extremely important in a sophisticated, real-time,
sensory—interactive system in which many processes are going
on in parallel at many different hierarchical levels.
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FACTORY CONTROL HIERARCHY

NBS has developed an integrated factory concept wutilizing the
theory of hierarchical control discussed above as well as the ex-—
perience derived from the microcomputer network implementation.

Figure 22 shows the ovganizational layout. The flow of control
during execution is doun the center. Orders are entered at the
top. Those orders call up process plans which have been entered
in the data base on the vight. That process plan data base is
hierarchically structured so that at the top there is only the
name of the process plan. This name is sent to the cell control.
The cell control computer accesses the data base which calls in
the sequence of steps (ie. the program) that is the process plan
at the cell level. Each command in this program is passed in se-—
quence to the next level down which is a work station. As each
cell-level command enters the work station, it is the name of a
process plan for the work—-station. The work station then goes to
its data base and calls up the sequence of instructions required

to decompose that process plan for the robot or for the machine
tool.

The data base on the vright also contains part description data
such as materials, dimensions. and tolerances. A third section
of the right hand data base is the dynamic data related to feeds
and speeds which may be changed as a result of sensed conditions
in the factory environment.

On the left is a second data base which is also divided into
three parts. On the far left is a management information and
control data base. En¢ries or queries to and from this data base
enable management to monitor and manage the whole factary by set-

ting priorities, or optimizing +for various parameters. The
center section of the left hand data base contains the status of
each machine tool and robot in the plant: ‘what program is it

vunning, what step in the program how long in that step, what
part is it operating on, etc. The right hand section of ¢this
data base contains the status of each part in progress: where is
it, what is its position and orientation, what operations have
been performed on it, quality control information, etc.

There is a set of computers called feedback processors that
operate on each level of this data base and extract out the in-
formation needed at the next higher level. As in the microcom—
puter robot control network, information is passed from one level
to another, and from one computing module to another through the
data base which serves as a common memory.

Thus, the system is completely modular. A new robot or machine
tool or even a wuwork-station can be added or deleted with a
minimum of impact on the rest of the system. These data bases
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contain a complete state description of the entire factory at
each instant of time. Activities of variaous modules and of the
variables themselves can be traced and recorded for debugging,
analysis, or optimization. The software is also modular. Pro~
grams are written in a language specific to that 1level. Each
computing module becomes a state machine which samples its input
for command and feedback variables, performs its computations,
and writes its output into the data base, and waits for the next
computation cycle. o

There are, of course. mony unresolved issues. A great deal of
additional work needs to be done to specify the data bases, the
control software, and the computing architecture. However, it is
felt that this approach ta a hierarchical control structure for
an avtomatic factory is a concept that will not become obsolete
in <¢the near future. It is a rteal-time sensory—interactive
hierarchical control system with sufficient modvlarity that com-
plexity of any module can be kept within tolerable limits regard-
less of the complexity of the overall system.

It should be noted that hierarchical structure.ouvtlined in this
paper is at present mainly a theoretical construct which NBS
developed and is now in the process of implementing and evaluat-
ing. In particular, the softuware implementation described in
Figures 18-20 has not yet been reduced to code. The control
structure in Figure 22 is ¢till only in the planning phase.
There are many details not covered here regarding timing and syn-—

cronization between the beshavior—generating and sensory-
processing hierarchies. Most of these issues remain ¢to be
resolved. There are also many questions regarding how such a

system can bhest be programmed, and how programs can be edited,
compiled, and debugoed. Nevertheless, we are confident that the
cross—coupled processing—generating hierarchy is a fundamentally
corvect approach to the problem of making industrial robots in—
creasingly responsive to sensory input. In particular, we +feel
that the modularity of the hierarchical decomposition, and espe-
cially the splitting apart of the sensory—-processing Ffunction
from the behavior—-generating function, is an important first step
in applying the principles of structured programmming to the con-
trol of robots. Uhether the final result is a hierarchy imple-~
mented on a network of small computers, or one implemeted in ap-—
propriately structured software on a single large computer, is
not important. What is important is that the control problem be
decomposed into subproblems which can be solved in a network of
computing modules wherein each module has a clearly defined in-
terface of input and ocutput variables and a clearly defined func-
tional relationship between the input and output. This 1is the
first step in good programming practice. We believe it to be
essential to the development of sophisticated sensory—interactive
control systems for robots and automated factories.
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FIGURE .1. An AND/OR graph.
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FIGURE 2. The function H maps the trajectory Ts into the trajectory TP



FIGURE 3. The input vector S is divided into two parts C and F
such that § = C+F.
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FIGURE 4. A stationary C vector establiihes azsetpo§nt, and as time progresses the
feedback vector varies from F© to F to F'. The § vector thus traces out
a trajectory T_. The H operator computes an output P for each input S an
so produces an output trajectory T . The result is thai thﬁ inguc comman
C 1is decomposed into a sequence of output subcommands P, P, P7.
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FIGURE 5. 1If the command vector C also changes from time to time, it will
trace out a trajectory Tc.
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FIGURE 8. Around each trajectory representing an’ ideal task performance there
exists an envelop of close-to-ideal trajectories which correspond
to successful, but not perfect, task performance. If the H functions
are defined throughout these envelops so as to drive the system back
toward the ideal whenever it deviates, then the trajectory will be

stable and task performance can be successful despite perturbations and
unexpected events.



ERROR IN S1

FIGURE 9. If the H function at the lower levels are sufficiently well defined,
small perturbatiouns from the ideal performance can be corrected by
low level feedback without requiring any change in the command from
higher levels.
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FIGURE 10. If the lower level H functions are not adequately defined, or if the
perturbations are too large for the lower level to cope, then feedback
to the higher levels produces changes in the task decomposition at a
higher level. The result is an alternative strategy.
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FIGURE 13. The D vector is composed of sensory variables E and context variables R.
: The function G Tecognizes the existence of a D vector in a particular
region of patterntcontext space by outputtlng a Q vector which is the
name of that region.
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FICURE 14. A time varying D vector traces out a trajectory T, which represents a
sensory experience T_ taking place in the context™T_,. A section of

a T, trajectory whicE maps into a small region of Q space corresponds

Phe recognition of an extended temporal pattern as a single event.



FIGURE 15.
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In (a) the two pattern vectors E, and E, are too close together in
pattern space to be reliably recognized (i.e. named) as in different
classes. In (b) the addition of context Rl to E. and R2 to Fz makes
the vectors D, and D2 far enough apart in pattern+contexc space to be
easily recognized as in separate classes.



FIGURE 16.

) e
4 . { 4 I
G 4 M 4 |
g fe—— zz<*+——-¥c
3
E4A - F3 -
. -1 113
a; §X3
R - p
3 3

ACTION L

SENSATION
| \ ENVIROMNMENT

A cross—-coupled processing-generating hierarchy. The M, modules
remember sensory experiences which occur in association with specific
activity in the generating hierarchy (P.) and other sensory modalities
(X.). The M, modules thus learn a set of internal expectations (i.e. a
prédictive model) of the external world as seen through the semsory
input channels. -
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